Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Computation graphs are Directed Acyclic Graphs (DAGs) where the nodes correspond to mathematical operations and are used widely as abstractions in optimizations of neural networks. The device placement problem aims to identify optimal allocations of those nodes to a set of (potentially heterogeneous) devices. Existing approaches rely on two types of architectures known as grouper-placer and encoder-placer, respectively. In this work, we bridge the gap between encoder-placer and grouper-placer techniques and propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit. The framework consists of five steps, including graph coarsening, node representation learning and policy optimization. It facilitates end-to-end training and takes into account the DAG nature of the computation graphs. We also propose a model variant, inspired by graph parsing networks and complex network analysis, enabling graph representation learning and jointed, personalized graph partitioning, using an unspecified number of groups. To train the entire framework, we use reinforcement learning using the execution time of the placement as a reward. We demonstrate the flexibility and effectiveness of our approach through multiple experiments with three benchmark models, namely Inception-V3, ResNet, and BERT. The robustness of the proposed framework is also highlighted through an ablation study. The suggested placements improve the inference speed for the benchmark models by up to over CPU execution and by up to compared to other commonly used baselines.more » « lessFree, publicly-accessible full text available December 15, 2025
-
We address the problem of learning from demonstrations when the learner must satisfy safety and/or performance requirements expressed as Stochastic Temporal Logic (StTL) specifications. We extend the maximum causal entropy inverse reinforcement learning framework to account for StTL constraints and show how to encode them via a minimal set of mixed-integer linear constraints. Our method is based on a cut-and-generate algorithm that iterates between two phases: in the cut phase, we use cutting hyperplanes to approximate the feasible region of the non-linear constraint that encodes atomic predicates and in the generate phase, we propagate these hyperplanes through the schematics to generate constraints for arbitrary formulas. Our algorithmic contributions are validated in different environments and specifications.more » « less
-
null (Ed.)Abstract Recent advances in network science, control theory, and fractional calculus provide us with mathematical tools necessary for modeling and controlling complex dynamical networks (CDNs) that exhibit long-term memory. Selecting the minimum number of driven nodes such that the network is steered to a prescribed state is a key problem to guarantee that complex networks have a desirable behavior. Therefore, in this paper, we study the effects of long-term memory and of the topological properties on the minimum number of driven nodes and the required control energy. To this end, we introduce Gramian-based methods for optimal driven node selection for complex dynamical networks with long-term memory and by leveraging the structure of the cost function, we design a greedy algorithm to obtain near-optimal approximations in a computationally efficiently manner. We investigate how the memory and topological properties influence the control effort by considering Erdős–Rényi, Barabási–Albert and Watts–Strogatz networks whose temporal dynamics follow a fractional order state equation. We provide evidence that scale-free and small-world networks are easier to control in terms of both the number of required actuators and the average control energy. Additionally, we show how our method could be applied to control complex networks originating from the human brain and we discover that certain brain cortex regions have a stronger impact on the controllability of network than others.more » « less
An official website of the United States government
